
An Approximate Global Illumination System for Computer Generated Films 
 
 Eric Tabellion* Arnauld Lamorlette† 

PDI/DreamWorks 
 
 
Abstract 
 
Lighting models used in the production of computer generated 
feature animation have to be flexible, easy to control, and efficient 
to compute. Global illumination techniques do not lend 
themselves easily to flexibility, ease of use, or speed, and have 
remained out of reach thus far for the vast majority of images 
generated in this context. This paper describes the implementation 
and integration of indirect illumination within a feature animation 
production renderer. For efficiency reasons, we choose to partially 
solve the rendering equation. We explain how this compromise 
allows us to speed-up final gathering calculations and reduce 
noise. We describe an efficient ray tracing strategy and its 
integration with a micro-polygon based scan line renderer 
supporting displacement mapping and programmable shaders. We 
combine a modified irradiance gradient caching technique with an 
approximate lighting model that enhances caching coherence and 
provides good scalability to render complex scenes into high-
resolution images suitable for film. We describe the tools that are 
made available to the artists to control indirect lighting in final 
renders. We show that our approach provides an efficient solution, 
easy to art direct, that allows animators to enhance considerably 
the quality of images generated for a large category of production 
work. 
 
CR Categor ies: I.3.3 [Computer Graphics]: Picture/Image 
Generation; I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism 
 
Keywords: global illumination, distributed ray tracing, irradiance 
caching, rendering, micro-polygon 
 
1 Introduction 
 
Typical production renderers use many principles of the Reyes 
architecture [Cook et al. 1987]. They are designed primarily to 
handle the tremendous amount of geometry and textures used in 
production. These renderers tend to use techniques such as 
streaming and caching because most scenes will not fit into the 
computer's main memory. Such renderers usually offer a flexible 
interface through programmable shaders [Upstill 1990; Driemeyer 
and Herken 2003], that allows users to implement customized 
lighting and shading models. They also extend their feature set 
and shading language to offer global illumination techniques, 
providing strategies to ray trace complex geometry. 
 The special effects industry has been taking advantage of ray 
tracing, to physically simulate and match the look of real 
materials and lighting conditions [Apodaca et al. 2002]. Those 
techniques greatly facilitate the integration of computer-generated                                                   
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elements within live action plates. Comparatively, very little 
animation work utilizes global illumination effects in its visuals. 
Generally, simpler direct lighting models are used to render very 
complex and highly detailed scenes. As a result, important light 
interactions between the elements of a scene are missing. 
Computer animation requires repeated rendering of a very large 
set of images, while simultaneously pursuing a highly stylized 
goal. To use global illumination in this image making process, the 
render times have to be minimized, and tools must be provided to 
enable flexible art direction with a very short feedback loop. 
 To address this need, we have developed an indirect 
illumination tool, addressing critical constraints: workflow 
efficiency and controllability. We orient our efforts towards 
rendering the global illumination effects that offer the most 
significant visual contribution without degrading performance, 
using a number of techniques that speed-up calculations 
significantly. We only consider a coarse geometric tessellation of 
the geometry during ray tracing, using an appropriate biasing 
technique. Radiant exitance texture maps are used to accelerate 
final gathering and to help reduce the noise of final renders. We 
use irradiance caching and enhance its efficiency and applicability 
to non-diffuse surfaces, by using it in conjunction with an 
approximate lighting model. Falloff and color correction controls 
allow the user to make final shading adjustments. As a result, we 
make visually acceptable approximations, and give the artist an 
efficient tool that greatly enhances creative possibilities. 
 In this paper, we describe our rendering system and its 
underlying techniques. First, we outline the previous research that 
inspired our work. A brief overview of our system is provided, 
followed by a description of the approximations we make and the 
optimizations we apply. We describe the tool that we have 
developed, its usability and its workflow. Finally, images and 
render times resulting from using this tool during the production 
of an animated feature film are discussed. 
 
2 Previous Work 
 
Global illumination has been the subject of much research in the 
past two decades. Solving a broader category of light paths than 
radiosity algorithms, Monte Carlo path tracing was first used by 

 
 (a) direct and indirect lighting (b) direct lighting only 
 
Figure 1: Example of a character in outside lighting conditions. (a) and 
(b) were rendered respectively with and without indirect lighting. 
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Kajiya [1986] to solve the rendering equation. Although very 
general and simple to implement, this technique is very slow. For 
the solution to converge, the number of paths that need to be 
sampled in the direction of the light is excessive. Alternative 
methods such as light tracing use sample paths originating from 
the light sources instead. Since the number of possible paths here 
is also very large, efficient light tracing requires the use of 
probability density functions to concentrate the effectiveness of 
the random walk towards the camera [Dutré and Willems 1994]. 
A natural extension called bidirectional path tracing combines 
paths from the camera and from the light, statistically weighting 
each paired path contribution to the final image [Lafortune and 
Willems 1993; Veach and Guibas 1994]. 
 Variance reduction techniques have also been highly studied, as 
they are beneficial for most Monte Carlo sampling algorithms. 
They can greatly improve rendering performance by increasing 
the convergence of the solution [Lafortune 1996; Veach and 
Guibas 1995; Jensen 95]. 
 Veach and Guibas [1997] propose an approach called 
metropolis light transport, which applies mutations to previously 
explored paths. The goal of this technique is to exploit the path 
space coherence, to concentrate the computational effort on paths 
with great importance to the final image. Carefully weighting each 
path and using intelligent mutation strategies lead to an algorithm 
that efficiently treats lighting situations difficult to solve 
otherwise. 
 To apply those algorithms to complex scenes, Pharr and 
Hanrahan [1996] propose a geometry-caching framework that 
allows a ray tracing engine to handle scenes that do not fit entirely 
in the computer’s memory. Pharr et al. [1997] further enhance this 
technique by reordering the operations of the rendering algorithm, 
so as to maximize caching coherence. 
 Orthogonal research directions have explored caching 
strategies to avoid recomputing similar quantities that can be 
extrapolated without significantly affecting the final image. 
Jensen [1996] proposed using photon mapping in a two pass 
rendering algorithm. In the first pass, photons are scattered 
through the scene following similar paths as in the light tracing 
approach, and recorded in a photon map. The second pass samples 
paths from the camera and reuses this information instead of 
recursively tracing rays towards light sources. The photon map 
acts as a cache of all the light paths throughout the scene, and 
using it appropriately significantly improves performance over 
previous algorithms. A clear and practical overview of photon 
mapping techniques can be found in [Jensen et al. 2002]. 
 Ward and Heckbert [1992] take advantage of spatial coherence, 
as well as the characteristic of the irradiance function over ideally 
diffuse surfaces, to apply sparse sampling of the indirect 
illumination throughout the scene. When light gathering occurs, 
the resulting incoming irradiance values are cached in a spatial 
subdivision data structure along with irradiance gradient vectors. 
This information is reused to extrapolate irradiance values in 
between the cached samples. An error function is described, that 

determines if a cached sample can be reused at a given location, 
or if it should be disregarded. This technique greatly improves 
rendering efficiency since it avoids sampling indirect illumination 
at every pixel in the rendered image. Unfortunately the technique 
does not apply well and loses its benefit when considering 
surfaces with complex bidirectional reflectance distribution 
functions (BRDFs).  
 The optimizations described in section 4 build upon this 
research, following a set of approximations to a full global 
illumination solution. 
 
3 System Overview 
 
Our system is designed to render images in five steps, as 
illustrated in figure 2. Each step generates information that may 
be reused, and stored in the appropriate files. Each step can be run 
in a separate process, multiple times if needed. Texture and depth-
map information are loaded on demand and handled by a texture 
cache memory-manager. 
 The first three steps generate shadow maps, radiosity maps and 
a deep frame buffer respectively. Shadow maps are necessary to 
compute shadowing for direct illumination. Radiosity texture 
maps are used optionally to accelerate the light gathering 
computation, as described in section 4.4. The deep frame buffer 
contains all the micro-polygons visible from the camera, which 
are rasterized and stored for further processing. 
 The fourth step iterates over visible micro-polygons and 
computes indirect illumination using a light gathering ray tracing 
algorithm. It uses irradiance caching to avoid sampling indirect 
illumination. The final step outputs a rendered image, after 
shading each micro-polygon, using the approximate lighting 
model described in section 4.6. No ray tracing happens during 
final shading: only the irradiance cache is used to derive indirect 
illumination. 
 
4 Approximations and Optimizations 
 
Much of the research in the field of global illumination has been 
focused on efficiently solving the rendering equation [Immel et al. 
1986; Kajiya 1986]:  
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where Le is the self emitted radiance and Li the incoming radiance. 
fr denotes the BRDF of the surface at position x, with surface 
normal n

�
. When mostly complex light paths contribute to the 

final image or when simulating indirect light cast by surfaces with 
complex BRDFs, the efficiency of simple algorithms degrades 
rapidly. Even sophisticated algorithms can become intolerably 
slow when computing the solution for complex lighting 
conditions. 
 Therefore, we have carefully selected the terms of the 
rendering equation which yield the most significant visual payoff. 
These approximations are exploited to speed-up rendering 
calculations and to improve the user workflow. 
 
4.1 Path Length 
 
Only indirect light paths containing a single bounce are simulated, 
by using a non-recursive light gathering algorithm. Indirect 
illumination contributions are computed by evaluating the 
irradiance at any given point in the scene, tracing rays over the 
hemisphere, and evaluating the programmable surface shader 
attached to each intersected surface. When invoked in that 
context, the shader only sums up direct lighting contributions, 

  

Figure 2: System overview 
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preventing the recursion to happen. If radiosity maps have been 
pre-computed, then no surface shader is invoked and the 
corresponding texture map is queried instead. 
 This limitation requires the user to fake highly indirect lighting 
situations where light bounces several times before contributing to 
the image. In practice users can manually place artificial light 
sources and bouncing geometry, which simulate secondary 
indirect illumination and offer a more direct and separate control. 
 The present choice protects the user from excessive render 
times by restricting the framework to discard highly indirect 
contributions. It also provides a better workflow, by avoiding the 
necessity of pre-computing radiosity maps. 
 
4.2 Surface Properties 
 
We decide to narrow the scope of our solution further treating 
only diffuse surface interreflections. It is desirable to prevent 
surfaces from casting specular indirect lighting onto each other. 
Simulating these phenomena tends to require the use of more 
sophisticated sampling techniques without giving much visual 
contribution. Caustics and glossy reflections are exceptions to this 
rule, which we leave for more specific algorithms to solve 
efficiently. 
 When programmable surface shaders are evaluated during the 
light gathering algorithm, they are specifically instructed to only 
consider the diffuse component of their BRDF. It prevents 
specular interreflections to happen but captures however local 
color texturing which will contribute to the richness of color 
bleeding effects. 
 During final shading, this restriction would be extreme for 
surfaces seen directly by the camera or through ideally specular 
reflections. In those cases, our goal is to let indirect illumination 
interact with arbitrary BRDFs, while keeping the benefits and 
efficiency of the irradiance caching scheme. We describe an 
approximate lighting model in section 4.6, which achieves this 
goal capturing important characteristics of such interactions. 
 
4.3 Ray Tracing Simplified Geometry 
 
Even though valuable research has been done to efficiently ray 
trace complex displacement-mapped geometry, we refrain the user 
from doing so. Our goal is to minimize the ray tracing effort, 
which is the main bottleneck of the light gathering algorithm. 
Reordering shading calculations does not apply in our case, since 
irradiance caching introduces a dependency between the rays cast 
during the evaluation of each irradiance sample. Inspired by 
previous work [Rushmeier et al. 1993; Christensen et al. 2003], 
we make the decision to ray trace coarsely tessellated geometry, 
even near the ray origin. 
 Since rays initiate from positions that lie on displaced micro-
polygons, we are faced with the problem of detecting self-
intersections. Traditional biasing techniques that ignore 

intersections near the ray origin cannot be applied here, since they 
would create significant light or shadow leak problems. When 
tracing a ray, we use the following ray offsetting algorithm: 

·  Record in a hit-list the ray intersections within a user-defined 
offset distance along the ray, after and before the ray origin. 

·  Stop the ray traversal once a hit is found beyond the offset 
distance along the ray. 

·  Find the closest hit to the ray origin in the hit-list, within the 
offset distance. If found, let this intersection become the new 
effective ray origin. Otherwise, leave the ray origin 
unchanged. 

·  Return the next hit in the hit-list as the resulting intersection. 

Figure 3 shows two examples and illustrates how the effective ray 
origin is adjusted. To prevent self-intersection artifacts, the offset 
distance used in this algorithm needs to be bigger than the 
maximum offset between the coarse and micro-polygon geometric 
tessellations. Since we are ray tracing approximate geometry, 
diffuse self-interreflections cast by geometric micro-
displacements might not be captured accurately. This is often 
visually of small importance, as illustrated in figure 4, since the 
highly detailed surface normal is considered when sampling the 
hemisphere. 
 In our system, users can adjust tessellation rates suitable for ray 
tracing. This tune-up is done per character, prop or environment 
once and for all. Every shot receives geometry with good default 
tessellation, which rate can be modified in specific shots if needed 
(e.g. extreme closeups). The trade-off between object detail and 
polygon count can therefore be controlled manually. Using solid 
angle based tessellation was not implemented but would be a 
valuable extension to our system. 
 
4.4 Radiosity maps 
 
Another bottleneck of the light gathering algorithm is computing a 
radiance estimate for each ray. Arvo [1986], Heckbert [1990] and 
many others [Jensen 1996; Christensen 2000] exploit this idea. 
We opt for a similar strategy using texture maps, which offer a 
constant time query and take advantage of the texture 
management engine of the rendering infrastructure. 

 

 
Figure 3: To ray trace simplified geometry, we adjust the ray origin. 

  
 (a) (b) (c) 
 
Figure 4: (a) was rendered ray tracing the 2 million displaced micro-
polygons seen in that figure, without using the ray offsetting algorithm. (b) 
was rendered using the ray offsetting algorithm, ray tracing only 4 
thousand polygons, shown in image (c). 
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 A texture image is mapped onto each surface in the scene. 
During a pre-processing stage, we compute and store radiance 
values for each texel. Since we simulate a single bounce of 
indirect light, our radiosity maps contain only direct illumination 
contributions. The maps can be computed by simply running the 
surface shader for every pixel of each texture. The texture 
mapping function needs to be inverted to evaluate the surface 
position and normal for each texel. In our case, we invert the 
texture coordinates of the four corners of the texel and obtain a 
corresponding quadrilateral on the surface. We then evaluate the 
surface shader, capturing the direct lighting, shading and 
texturing, applying anti-aliasing over the quadrilateral area. 
 The textures do not require very high-resolution to capture 
sufficient detail, and using lower resolution textures will work to 
our advantage. This choice will average high frequency indirect 
lighting information and greatly reduce the noise in the final 
solution. It is possible to use ray differentials [Igehy 1999] and 
mip-mapping techniques to benefit from appropriate filtering 

regardless of texture sizes. In our implementation, the texture 
maps resolutions are computed to be proportional to each surface 
size and aspect ratio. That metric can be computed in world space 
or in screen space based on what works best in each case. This 
choice is left to the user, who can also adjust a global resolution 
multiplier parameter. Screen space was used most often as it 
would automatically scale the textures proportionally to their 
screen coverage and provide a good automatic default. This 
method also assigns very low resolution textures to objects far in 
the distance from the camera’s point of view. However the 
technique fails to provide consistent texture sizes in cases of 
extreme camera motion or when objects are outside the camera 
frustum. 
 Notice that in our context, the radiosity maps can be computed 
efficiently with no perceptible noise. When simulating multiple 
bounces of light, the maps can be derived using a light tracing 
algorithm, or can be replaced by an alternate caching structure 
such as a photon map. Doing so requires spending substantially 
more compute time shooting enough light samples to eliminate 
noise in the maps, which translates otherwise into temporal noise 
in the final render. To reduce visual artifacts in corner areas, it has 
also been suggested to disregard the caching structure and use 
recursive distributed ray tracing when ray intersections are 
arbitrarily close to the ray origin. Our restricted framework 
doesn’ t suffer from these problems, which, in turn, greatly 
contributes to reduced final render times. 
 
4.5 Irradiance Caching Coherence 
 
The benefits of the irradiance gradient caching technique are very 
valuable to us [Ward and Heckbert 1992]. During the light 
gathering step, we compute irradiance samples located on micro-
polygons that may be displaced. Every irradiance sample is saved 
in a cache along with corresponding geometric information and 
irradiance gradient vectors. This information is used to smoothly 
extrapolate irradiance values for neighboring positions. 
 We adjust the technique to enhance caching coherence for 
scenes containing high geometric detail and complex surface 
properties. To compute the error of using a sample i at any 
position x, we use the following function instead: 
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k  controls the general accuracy of the algorithm, and is the only 
parameter that the user can modify. k  was set to 1 in most cases, 
and +a was hard-coded to 10 degrees. Ri is the closest distance to 
the intersected surfaces during the evaluation of the irradiance 
sample i. At each pixel we compute the area of that pixel 
projected onto the plane passing through x with normal n

�
using 

the camera projection. We then let R+ and -R  be respectively 10 
and 1.5 times the square root of the projected pixel area. These 
values can easily be derived using the solid angle of the pixel 
through which x is seen. 
 To avoid sampling the irradiance, we loop over candidate 
cached samples with positive weight and compute the weighted 
average of their extrapolated contribution. The weight of each 
sample is computed using the equation below:  
 ( ) ( )nxnxw ii
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 (a) direct and indirect lighting (b) only indirect lighting  

 
 (c) closeup of a complex BRDF (d) irradiance sampling frequency  

 
 (e) using the bumped normal (f) using the original error function 
 
Figure 5: A bouncing ball in a cornell box rendered with equation (8), 
using 1000 rays per irradiance sample. (a) and (b) show that most of the 
lighting on the sphere is indirect. (c) shows a closeup of a bump-mapped 
complex BRDF. (d) shows the irradiance samples as white pixels when 
using equation (5) with 5.0=k . (e) is similar to (d) but uses a bumped 
normal in equation (4). (f) uses the error function described in [Ward and 
Heckbert 1992]. The accuracy was adjusted so that image (d) and (f) 
contain the same number of irradiance samples. Image (f) shows a higher 
sample density in corner areas. 
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 This model nicely correlates the maximum distance to 
candidate cached samples with the scale of the scene and the 
amount of detail desired in the final render. The sampling density 
is adjusted automatically, avoiding sampling patterns that are too 
sparse or too dense. Figure 5 (d) and (f) illustrate the sampling 
frequency that is achieved when using equation (5) and the 
original error function described in [Ward and Heckbert 1992] 
respectively. They have both been rendered using the same 
number of irradiance samples. The error function presented above 
avoids over-sampling the irradiance in corner areas, when 
compared to the original formulation. It will therefore scale better 
with highly detailed geometry that contain more corners or 
creases and less flat surfaces. 
 In addition, we avoid over-sampling the irradiance due to 
surface normal perturbations by using a surface normal that has 
not been altered by bump mapping when computing equation (4). 
Comparing figure 5 (d) and (e) illustrates the corresponding gain 
in caching coherence. To speed-up the workflow, users can also 
disable displacement mapping during interactive lighting sessions, 
which increases the coherence similarly. 
 In specific cases that offer great payoff, we allow procedural 
geometry shaders to enhance the irradiance caching coherence. 
The high geometric frequency of fur, for instance, completely 
degrades the efficiency of this interpolation scheme. However, if 
the fur is short, it can be interesting to apply the same indirect 
illumination to the fur as to the surface growing it. In this case we 
allow the geometry shader to specify the location where light 
gathering should be performed. For each fur fragment, the 
geometry shader has the option to force indirect illumination 
queries to occur at the root of the corresponding hair. This greatly 
enhances caching coherence along and across each hair while 
producing consistent and acceptable lighting as seen in figure 9. 
 
4.6 Approximate Lighting Model 
 
We propose a simplified lighting model that enables the irradiance 
caching coherence described in the previous section, while 
preserving some of the properties of complex BRDFs. 
 During the final shading step, we apply the extrapolated 
irradiance to the local surface shader, by converting the irradiance 
to corresponding approximate incoming field radiance. We choose 
a dominant incoming light direction w¢

�
, and we assume the result 

of the irradiance to be coming fully from this direction. Since we 
assumed an ideally diffuse surface property when we sampled the 
irradiance, we compute the radiance as follows:  
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,  is the extrapolated irradiance at position x and is 

computed as described in section 4.5. This information is then 
passed to the surface shader to let it sum this contribution 
applying its full BRDF. Each time the irradiance is sampled 
during the light gathering step, we derive a dominant incoming 
light direction iw¢

�
 using the weighted average of the ray directions 

used in sampling the hemisphere. The luminance of each ray’s 
radiance estimate is used in the weighting process. This provides a 
direction of dominant incoming indirect light, which varies 
smoothly across a surface. The result is stored in the cache along 
with its corresponding irradiance sample, and averaged at any 
position x using weights described in equation (5):  
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 As it is possible to capture enhanced chromaticity effects by 
applying this technique separately for each wavelength, we 
choose three dominant incoming light directions instead. Each of 
the three directions is the result of weighting sample ray directions 
by the radiance estimate’s color components red, green and blue 
respectively. The radiance for each specific wavelength is then 
applied coming from its corresponding dominant direction. 
 This yields the following approximate rendering equation: 
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Li�  is computed using equation (6) and lw¢

�
 using equation (7). Ld 

denotes the direct lighting contribution from a traditional point 
light source k and is evaluated using the corresponding 
programmable light shader. 
 While physically incorrect, this indirect lighting model is an 
efficient way to apply the irradiance gradient caching technique to 
surfaces with arbitrary BRDFs. This technique requires storing a 
little extra information in the irradiance cache and reduces 
considerably the number of rays required to capture dominant 
directional effects on indirectly lit surfaces. Figure 5 (c) was 
rendered using equation (8), which enabled using a sparse 
distribution of irradiance samples, as illustrated in figure 5 (d). 
Rendering the sphere in that figure would otherwise require 
sampling the irradiance at each pixel. 
 Although this method has limitations when the average is not a 
good heuristic to compute the dominant light direction, it has been 
applied to a wide range of practical cases without causing 
artifacts. 
 
5 Tool Description 
 
We discuss the integration of the algorithms and concepts 
presented in previous chapters within a proprietary production 
renderer and a framework of existing shaders. The rendering 
workflow is presented as well as a description of the many 
controls available to the user. 
 
5.1 Shader Integration 
 
The indirect illumination is available to the user as a new type of 
light shader that can be used on any surface. In our framework, 
surface shaders can be written independently of the desired 
lighting effects. The light shaders are responsible for providing 
incoming light directions and colors. Since our lighting model fits 
this framework, its application does not require pre-existing 
surface shaders to be modified. The indirect lighting contributes 
automatically to complex surface effects such as subsurface 
scattering. 
 In comparison, some rendering systems require the surface 
shader to explicitly invoke indirect lighting samples. This choice 
permits a surface shader to easily apply importance sampling 
using properties of its BRDF. Since this is not a requirement in 
our approximate model, it is more flexible for us to alleviate the 
surface shaders from that task. In cases where it is needed, a more 
generic interface allows surface shaders to provide a description 
of their BRDF [Slusallek and Seidel 1995]. 
 The indirect light shader provides only indirect illumination. 
The separation from the direct illumination is important as it 
allows independent control and adjustment of each contribution. It 
also lets each type of light shader be responsible for solving a 
different problem, using an appropriate sampling strategy [Ward 
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1995]. An area light, for instance, is modeled using many virtual 
point light sources scattered over its surface. Ideally specular 
reflections and refractions are treated similarly, after tracing 
additional rays. 
 
5.2 Workflow 
 
In our rendering system, the deep frame buffer can be shaded 
multiple times using an interactive lighting tool. This allows 
reshading without spending any resources processing and scan-
converting the geometry. This works well in a typical workflow, 
where the animation is established and the lighter need only focus 
on lighting a few fixed frames. 
 The lighting tool can also trigger the light gathering pass prior 
to shading. Since we make use of irradiance caching, two passes 
are required so that each pixel extrapolates irradiance from cached 
samples located above and below the current scan line in the 
image plane. When gathering and shading are performed in a 
single pass, pixels only extrapolate irradiance from cached 
samples located on one side of the scan line, which produces 
unacceptable visual artifacts. Yet, we let the gathering pass 
provide visual feedback to the user by also shading the image 
using low quality settings. At the end of the gathering pass, the 
irradiance cache is saved into a file for future reuse. When the 
final shading pass happens, only the irradiance cache is used to 
derive indirect illumination. 
 The image can be reshaded many times, without having to trace 
a single ray as long as the indirect illumination remains 
unchanged. If that is not the case, the user can specifically request 
use of both gathering and shading passes. This is an important 
aspect of the workflow, as it provides a way to keep adjusting 
most of the shader settings, while getting quick visual feedback. 
In many cases, changes to the direct lighting will have an impact 
on the indirect lighting. Still, the user can adjust the former many 
times without triggering a gathering pass. After several iterations 
and adjustments, the lighter can then fully update the solution. 
 Also of importance, is the ability to perform light gathering 
without needing to pre-compute radiosity maps or any alternate 
caching structure. Our choice to only simulate one bounce of 
indirect light allows us to do so without excessively degrading 
interactive rendering performance. In our case, lighters can indeed 
go through initial adjustments without using the radiosity maps 
caching technique. This allows immediate visual feedback which 
speeds up interactive lighting turnaround. The maps are generated 
and used mainly to optimize the rendering of film-resolution 
images over the full length of a shot. 

 Since we have developed an infrastructure to cache shading 
information into texture maps, we can take advantage of it to 
precompute and cache static indirect lighting over an entire shot 
or sequence. That indirect lighting is then made available to the 
shot as yet another texture map in the scene. Alternatively, we can 
also reuse the irradiance cache over several frames. Each new 
frame will compute light gathering only in regions of the image 
that have not been covered in previous frames. The new irradiance 
samples are added to the existing cache, which is then used to 
render the next frame. This approach has not been used in practice 
as it imposes rendering each image in a shot sequentially, which is 
incompatible with our strategy of rendering images in parallel 
using a render-farm. 
 
5.3 Art Direction 
 
Even though a physically based algorithm is used to compute 
indirect illumination, its result might differ from the artist’s 
aesthetic goal. A hard constraint is imposed, as no object in the 
scene can be moved to alter the indirect lighting. It would 
otherwise require changing the layout or the animation, which in 
most cases has already been determined and finaled. We give here 
an overview of the controls that are made available to the user. 
 The user can control which objects in the scene will receive 
indirect illumination and define the list of all the geometries that 
need to be ray-traced when gathering light. The user can also 
redefine which surface shader is invoked to compute the radiance 
estimate when intersecting a given geometry. This provides great 
flexibility, and in extreme cases allows defining the direct lighting 
and the indirect lighting completely independently. The user is 
able to replace complex geometries by simple bounce planes, to 
control indirect lighting more easily. It also alleviates the ray 
tracing engine and optimizes rendering times. 
 Most shader types inherit from a set of standard parameters that 
affect the indirect lighting calculation. Surface shaders, for 
instance, have controls that enable altering color bleeding that 
occurs between surfaces. Adjustment of the incoming indirect 
lighting per-surface is also possible. Direct light shaders also 
inherit parameters that let the user specify which direct lights need 
to be considered in the indirect lighting calculations. A direct light 
can potentially be considered only for indirect illumination, but 
not cast any direct lighting in the final image. 
 To let the user apply geometric falloffs, we provide a filter light 
shader, which references a specific indirect light shader in the 
scene. The filter light provides a filtered version of the indirect 
illumination, and is manipulated similarly to a spot light, defining 

 
 (a) using a single bounce of indirect light (b) using multiple bounces of indirect light 

Figure 6: Example of a 
character in interior lighting 
conditions. Highly indirect 
lighting contributions can 
efficiently be rendered and 
easily controlled, by letting 
the artist place lights and 
bouncing geometry that 
approximate these effects. 
Image (a) was rendered 
simulating a single bounce 
of indirect light, while 
image (b) was rendered for 
comparison with multiple 
bounces. 
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a position, orientation, and cone angle. It offers a set of artificial 
cone and distance falloffs, as well as a directionality falloff, that 
allows the indirect lighting to vary as a function of the angle q  
between the surface normal and the filter light direction. We 
compute it as follows: 
 
 ( ) ( )[ ]df 2/cosqq =  (9) 
 
In this model, surfaces facing the filter light will receive more 
indirect lighting than surfaces facing away. d is a user parameter 
that controls how fast the falloff applies. 
 The filter light offers many color correction controls allowing 
adjustments of brightness, contrast, and saturation, as illustrated in 
figure 7. Using them in conjunction with the proper falloffs has 
revealed to be a powerful indirect lighting art direction tool. Since 
adjusting those settings only requires re-evaluation of the shading 
pass, this provides an efficient workflow in which final color and 
intensity adjustments can be made quickly. 
 
6 Results 
 
This tool was used extensively by artists during the production of 
the computer animated feature film “Shrek 2” . It was used to light 
primary and secondary characters in 78% of the shots, and to light 
props and environments in 30% of the shots. Following is a 
rendering example, and a discussion of the quantitative aspects of 
using this framework. 
 Figure 1 shows an image in which the foreground character has 
been lit using direct and indirect lighting. The character reflects 
light onto itself. Image (a) shows the final render, while image (b) 
shows the same render without indirect lighting. The images were 
rendered on a Pentium IV running at 2 GHz, using 2 GB of 
physical memory. The images were rendered at film resolution for 
final renders (1828 x 1102 pixels), and at a third of that resolution 

for preview work. When working interactively in the lighting tool, 
low quality settings were used to sample the irradiance, the 
texture maps, and the shadow maps. In addition, displacement 
mapping and fur were disabled, and a lower micro-polygon 
tessellation rate was used. Figure 8 shows the render times for the 
layer containing the foreground character in figure 1 (a). 
 The radiosity texture maps were not used during interactive 
work to allow for a faster adjustment and visual feedback cycle. 
The textures were only used during batch rendering and the 
resolutions were computed using a screen space metric. For 
example, the texture map covering the character’s belly was 145 
by 118 pixels. 
 The geometry generated over 7.8 million micro-polygons, 
while the simplified ray-traced geometry totaled only 49 thousand 
polygons. The ray-traced geometry and acceleration structure only 
used 23 MB of memory. Ray tracing required neither swapping 
nor geometry caching on disk. 
 The gathering step used 600 rays per irradiance sample at high 
quality settings, and 50 rays at low quality settings. In cases where 
the indirect illumination was very uniform, settings as low as 100 
were enough to eliminate the noise. In more complex scenes or 
when the indirect illumination came primarily from smaller areas, 
settings up to 2000 were required. The average across all shots of 
the movie was 420 rays per sample with a standard deviation of 
250. 
 The irradiance cache contained 68615 irradiance samples at 
film resolution, compared to 22301 at video resolution and 10085 
using low quality settings. The caching error function provides on 
average 3x scalability from video to film resolution, and an 
additional 50% speed-up in this case, when displacement mapping 
is disabled. The render times given in figure 8 were measured 
while rendering the full image viewport. However, when users 
interactively update specific regions of the image, the gathering 
and shading times are proportionally lower. 
 
7 Conclusion 
 
We have presented a set of techniques that allow animators to 
render and control approximate global illumination effects that 
were once considered too expensive and hard to control. Our 
algorithms improve final gathering render times by ray tracing 
only simplified geometry and using texture maps to cache parts of 
the rendering equation. They also increase the spatial coherence 
and range of application of the irradiance gradient caching 
technique using an approximate lighting model. We have exposed 
the integration of our algorithms within a production renderer and 
its programmable shaders. We have seen how artists are able to 

  
Film Resolution 

High Quality 
Video Resolution 

High Quality 
Video Resolution 

Low Quality 

Shadow-maps 0:01:33 0:00:31 0:00:22 

Radiosity maps 0:03:20 0:01:37 - 

Deep Frame-Buffer 0:03:03 0:01:00 0:00:10 

Gathering 0:42:59 0:12:51 0:03:44 

Shading 0:17:00 0:03:37 0:00:28 

Total 1:07:55 0:19:36 0:04:44 
 
Figure 8: Render times for a foreground character at film and video 
resolution. The right column shows timing using low quality settings 
during interactive work. Times are given in  hours:minutes:seconds. 

    
 (a) reference (b) saturated (c) warm (d) directional 

Figure 7: Example of 
adjusmtents of the indirect 
illumination, using a filter 
light shader. Image (a) is the 
reference image. Image (b) 
was rendered increasing the 
saturation of the indirect 
lighting. In image (c) the hue 
of the indirect light was 
adjusted to provide a warmer 
feel. The overall brightness 
on the character’s face was 
increased using geometric 
falloffs. In image (d) the 
directionality was increased 
to emphasize the lighting 
coming from the right. Each 
image took 40 seconds to 
reshade at video resolution. 
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Figure 9: Example of a furry character. The fur receives the same indirect 
lighting as the skin. Only a rough tessellation of the character skin is ray 
traced. 

control many aspects of the indirect lighting calculation within a 
workflow that provides a fast feedback loop. 
 Without such a tool, artists would otherwise need to spend 
significant time, placing and animating direct lights, to try to 
achieve similar results. In some cases, indirect light interactions 
are very difficult or nearly impossible to reproduce using only 
direct lighting techniques. As characters or elements are animated 
through a lit environment, the indirect lighting contributions are 
automatically updated. We found that this system enhances the 
image making process because a quick setup phase can provide a 
solid basis early on. The artist is able to spend more time 
designing and adjusting a lighting strategy as opposed to 
attempting to simulate complex interaction effects. 
 We plan to extend our work in several challenging directions, 
by providing additional light bounces to our solution, without 
introducing obstacles in the user’s workflow. We would also like 
to enhance further the spatial coherence by using undisplaced 
surface positions and normals in the irradiance caching error 
function during final renders. Finally, we would like to explore 
new ways of storing additional information in the irradiance 
cache, to broaden its applicability. 
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