
An Approximate Global Illumination System for Computer Generated Films

 Eric Tabellion* Arnauld Lamorlette†

PDI/DreamWorks

Abstract

Lighting models used in the production of computer generated
feature animation have to be flexible, easy to control, and efficient
to compute. Global illumination techniques do not lend
themselves easily to flexibility, ease of use, or speed, and have
remained out of reach thus far for the vast majority of images
generated in this context. This paper describes the implementation
and integration of indirect illumination within a feature animation
production renderer. For efficiency reasons, we choose to partially
solve the rendering equation. We explain how this compromise
allows us to speed-up final gathering calculations and reduce
noise. We describe an efficient ray tracing strategy and its
integration with a micro-polygon based scan line renderer
supporting displacement mapping and programmable shaders. We
combine a modified irradiance gradient caching technique with an
approximate lighting model that enhances caching coherence and
provides good scalability to render complex scenes into high-
resolution images suitable for film. We describe the tools that are
made available to the artists to control indirect lighting in final
renders. We show that our approach provides an efficient solution,
easy to art direct, that allows animators to enhance considerably
the quality of images generated for a large category of production
work.

CR Categor ies: I.3.3 [Computer Graphics]: Picture/Image
Generation; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: global illumination, distributed ray tracing, irradiance
caching, rendering, micro-polygon

1 Introduction

Typical production renderers use many principles of the Reyes
architecture [Cook et al. 1987]. They are designed primarily to
handle the tremendous amount of geometry and textures used in
production. These renderers tend to use techniques such as
streaming and caching because most scenes will not fit into the
computer's main memory. Such renderers usually offer a flexible
interface through programmable shaders [Upstill 1990; Driemeyer
and Herken 2003], that allows users to implement customized
lighting and shading models. They also extend their feature set
and shading language to offer global illumination techniques,
providing strategies to ray trace complex geometry.
 The special effects industry has been taking advantage of ray
tracing, to physically simulate and match the look of real
materials and lighting conditions [Apodaca et al. 2002]. Those
techniques greatly facilitate the integration of computer-generated
--

*e-mail: et@pdi.com
†e-mail: arnauld@pdi.com

elements within live action plates. Comparatively, very little
animation work utilizes global illumination effects in its visuals.
Generally, simpler direct lighting models are used to render very
complex and highly detailed scenes. As a result, important light
interactions between the elements of a scene are missing.
Computer animation requires repeated rendering of a very large
set of images, while simultaneously pursuing a highly stylized
goal. To use global illumination in this image making process, the
render times have to be minimized, and tools must be provided to
enable flexible art direction with a very short feedback loop.
 To address this need, we have developed an indirect
illumination tool, addressing critical constraints: workflow
efficiency and controllability. We orient our efforts towards
rendering the global illumination effects that offer the most
significant visual contribution without degrading performance,
using a number of techniques that speed-up calculations
significantly. We only consider a coarse geometric tessellation of
the geometry during ray tracing, using an appropriate biasing
technique. Radiant exitance texture maps are used to accelerate
final gathering and to help reduce the noise of final renders. We
use irradiance caching and enhance its efficiency and applicability
to non-diffuse surfaces, by using it in conjunction with an
approximate lighting model. Falloff and color correction controls
allow the user to make final shading adjustments. As a result, we
make visually acceptable approximations, and give the artist an
efficient tool that greatly enhances creative possibilities.
 In this paper, we describe our rendering system and its
underlying techniques. First, we outline the previous research that
inspired our work. A brief overview of our system is provided,
followed by a description of the approximations we make and the
optimizations we apply. We describe the tool that we have
developed, its usability and its workflow. Finally, images and
render times resulting from using this tool during the production
of an animated feature film are discussed.

2 Previous Work

Global illumination has been the subject of much research in the
past two decades. Solving a broader category of light paths than
radiosity algorithms, Monte Carlo path tracing was first used by

 (a) direct and indirect lighting (b) direct lighting only

Figure 1: Example of a character in outside lighting conditions. (a) and
(b) were rendered respectively with and without indirect lighting.

� ACM, (2004). This is the author’s version of the work. It is posted here by
permission of ACM for your personal use. Not for redistribution. The definitive
version was published in Siggraph 2004 Proceedings, { VOL#, ISS#, 08/2004}
http://portal.acm.org/portal.cfm

 2

Kajiya [1986] to solve the rendering equation. Although very
general and simple to implement, this technique is very slow. For
the solution to converge, the number of paths that need to be
sampled in the direction of the light is excessive. Alternative
methods such as light tracing use sample paths originating from
the light sources instead. Since the number of possible paths here
is also very large, efficient light tracing requires the use of
probability density functions to concentrate the effectiveness of
the random walk towards the camera [Dutré and Willems 1994].
A natural extension called bidirectional path tracing combines
paths from the camera and from the light, statistically weighting
each paired path contribution to the final image [Lafortune and
Willems 1993; Veach and Guibas 1994].
 Variance reduction techniques have also been highly studied, as
they are beneficial for most Monte Carlo sampling algorithms.
They can greatly improve rendering performance by increasing
the convergence of the solution [Lafortune 1996; Veach and
Guibas 1995; Jensen 95].
 Veach and Guibas [1997] propose an approach called
metropolis light transport, which applies mutations to previously
explored paths. The goal of this technique is to exploit the path
space coherence, to concentrate the computational effort on paths
with great importance to the final image. Carefully weighting each
path and using intelligent mutation strategies lead to an algorithm
that efficiently treats lighting situations difficult to solve
otherwise.
 To apply those algorithms to complex scenes, Pharr and
Hanrahan [1996] propose a geometry-caching framework that
allows a ray tracing engine to handle scenes that do not fit entirely
in the computer’s memory. Pharr et al. [1997] further enhance this
technique by reordering the operations of the rendering algorithm,
so as to maximize caching coherence.
 Orthogonal research directions have explored caching
strategies to avoid recomputing similar quantities that can be
extrapolated without significantly affecting the final image.
Jensen [1996] proposed using photon mapping in a two pass
rendering algorithm. In the first pass, photons are scattered
through the scene following similar paths as in the light tracing
approach, and recorded in a photon map. The second pass samples
paths from the camera and reuses this information instead of
recursively tracing rays towards light sources. The photon map
acts as a cache of all the light paths throughout the scene, and
using it appropriately significantly improves performance over
previous algorithms. A clear and practical overview of photon
mapping techniques can be found in [Jensen et al. 2002].
 Ward and Heckbert [1992] take advantage of spatial coherence,
as well as the characteristic of the irradiance function over ideally
diffuse surfaces, to apply sparse sampling of the indirect
illumination throughout the scene. When light gathering occurs,
the resulting incoming irradiance values are cached in a spatial
subdivision data structure along with irradiance gradient vectors.
This information is reused to extrapolate irradiance values in
between the cached samples. An error function is described, that

determines if a cached sample can be reused at a given location,
or if it should be disregarded. This technique greatly improves
rendering efficiency since it avoids sampling indirect illumination
at every pixel in the rendered image. Unfortunately the technique
does not apply well and loses its benefit when considering
surfaces with complex bidirectional reflectance distribution
functions (BRDFs).
 The optimizations described in section 4 build upon this
research, following a set of approximations to a full global
illumination solution.

3 System Overview

Our system is designed to render images in five steps, as
illustrated in figure 2. Each step generates information that may
be reused, and stored in the appropriate files. Each step can be run
in a separate process, multiple times if needed. Texture and depth-
map information are loaded on demand and handled by a texture
cache memory-manager.
 The first three steps generate shadow maps, radiosity maps and
a deep frame buffer respectively. Shadow maps are necessary to
compute shadowing for direct illumination. Radiosity texture
maps are used optionally to accelerate the light gathering
computation, as described in section 4.4. The deep frame buffer
contains all the micro-polygons visible from the camera, which
are rasterized and stored for further processing.
 The fourth step iterates over visible micro-polygons and
computes indirect illumination using a light gathering ray tracing
algorithm. It uses irradiance caching to avoid sampling indirect
illumination. The final step outputs a rendered image, after
shading each micro-polygon, using the approximate lighting
model described in section 4.6. No ray tracing happens during
final shading: only the irradiance cache is used to derive indirect
illumination.

4 Approximations and Optimizations

Much of the research in the field of global illumination has been
focused on efficiently solving the rendering equation [Immel et al.
1986; Kajiya 1986]:

 () () ()�
W

¢+=

x

xfxLxL reo wwww
����

,,,, ()w¢
�

,xLi w¢×
��

n idw¢ (1)

where Le is the self emitted radiance and Li the incoming radiance.
fr denotes the BRDF of the surface at position x, with surface
normal n

�
. When mostly complex light paths contribute to the

final image or when simulating indirect light cast by surfaces with
complex BRDFs, the efficiency of simple algorithms degrades
rapidly. Even sophisticated algorithms can become intolerably
slow when computing the solution for complex lighting
conditions.
 Therefore, we have carefully selected the terms of the
rendering equation which yield the most significant visual payoff.
These approximations are exploited to speed-up rendering
calculations and to improve the user workflow.

4.1 Path Length

Only indirect light paths containing a single bounce are simulated,
by using a non-recursive light gathering algorithm. Indirect
illumination contributions are computed by evaluating the
irradiance at any given point in the scene, tracing rays over the
hemisphere, and evaluating the programmable surface shader
attached to each intersected surface. When invoked in that
context, the shader only sums up direct lighting contributions,

Figure 2: System overview

 3

preventing the recursion to happen. If radiosity maps have been
pre-computed, then no surface shader is invoked and the
corresponding texture map is queried instead.
 This limitation requires the user to fake highly indirect lighting
situations where light bounces several times before contributing to
the image. In practice users can manually place artificial light
sources and bouncing geometry, which simulate secondary
indirect illumination and offer a more direct and separate control.
 The present choice protects the user from excessive render
times by restricting the framework to discard highly indirect
contributions. It also provides a better workflow, by avoiding the
necessity of pre-computing radiosity maps.

4.2 Surface Properties

We decide to narrow the scope of our solution further treating
only diffuse surface interreflections. It is desirable to prevent
surfaces from casting specular indirect lighting onto each other.
Simulating these phenomena tends to require the use of more
sophisticated sampling techniques without giving much visual
contribution. Caustics and glossy reflections are exceptions to this
rule, which we leave for more specific algorithms to solve
efficiently.
 When programmable surface shaders are evaluated during the
light gathering algorithm, they are specifically instructed to only
consider the diffuse component of their BRDF. It prevents
specular interreflections to happen but captures however local
color texturing which will contribute to the richness of color
bleeding effects.
 During final shading, this restriction would be extreme for
surfaces seen directly by the camera or through ideally specular
reflections. In those cases, our goal is to let indirect illumination
interact with arbitrary BRDFs, while keeping the benefits and
efficiency of the irradiance caching scheme. We describe an
approximate lighting model in section 4.6, which achieves this
goal capturing important characteristics of such interactions.

4.3 Ray Tracing Simplified Geometry

Even though valuable research has been done to efficiently ray
trace complex displacement-mapped geometry, we refrain the user
from doing so. Our goal is to minimize the ray tracing effort,
which is the main bottleneck of the light gathering algorithm.
Reordering shading calculations does not apply in our case, since
irradiance caching introduces a dependency between the rays cast
during the evaluation of each irradiance sample. Inspired by
previous work [Rushmeier et al. 1993; Christensen et al. 2003],
we make the decision to ray trace coarsely tessellated geometry,
even near the ray origin.
 Since rays initiate from positions that lie on displaced micro-
polygons, we are faced with the problem of detecting self-
intersections. Traditional biasing techniques that ignore

intersections near the ray origin cannot be applied here, since they
would create significant light or shadow leak problems. When
tracing a ray, we use the following ray offsetting algorithm:

· Record in a hit-list the ray intersections within a user-defined
offset distance along the ray, after and before the ray origin.

· Stop the ray traversal once a hit is found beyond the offset
distance along the ray.

· Find the closest hit to the ray origin in the hit-list, within the
offset distance. If found, let this intersection become the new
effective ray origin. Otherwise, leave the ray origin
unchanged.

· Return the next hit in the hit-list as the resulting intersection.

Figure 3 shows two examples and illustrates how the effective ray
origin is adjusted. To prevent self-intersection artifacts, the offset
distance used in this algorithm needs to be bigger than the
maximum offset between the coarse and micro-polygon geometric
tessellations. Since we are ray tracing approximate geometry,
diffuse self-interreflections cast by geometric micro-
displacements might not be captured accurately. This is often
visually of small importance, as illustrated in figure 4, since the
highly detailed surface normal is considered when sampling the
hemisphere.
 In our system, users can adjust tessellation rates suitable for ray
tracing. This tune-up is done per character, prop or environment
once and for all. Every shot receives geometry with good default
tessellation, which rate can be modified in specific shots if needed
(e.g. extreme closeups). The trade-off between object detail and
polygon count can therefore be controlled manually. Using solid
angle based tessellation was not implemented but would be a
valuable extension to our system.

4.4 Radiosity maps

Another bottleneck of the light gathering algorithm is computing a
radiance estimate for each ray. Arvo [1986], Heckbert [1990] and
many others [Jensen 1996; Christensen 2000] exploit this idea.
We opt for a similar strategy using texture maps, which offer a
constant time query and take advantage of the texture
management engine of the rendering infrastructure.

Figure 3: To ray trace simplified geometry, we adjust the ray origin.

 (a) (b) (c)

Figure 4: (a) was rendered ray tracing the 2 million displaced micro-
polygons seen in that figure, without using the ray offsetting algorithm. (b)
was rendered using the ray offsetting algorithm, ray tracing only 4
thousand polygons, shown in image (c).

 4

 A texture image is mapped onto each surface in the scene.
During a pre-processing stage, we compute and store radiance
values for each texel. Since we simulate a single bounce of
indirect light, our radiosity maps contain only direct illumination
contributions. The maps can be computed by simply running the
surface shader for every pixel of each texture. The texture
mapping function needs to be inverted to evaluate the surface
position and normal for each texel. In our case, we invert the
texture coordinates of the four corners of the texel and obtain a
corresponding quadrilateral on the surface. We then evaluate the
surface shader, capturing the direct lighting, shading and
texturing, applying anti-aliasing over the quadrilateral area.
 The textures do not require very high-resolution to capture
sufficient detail, and using lower resolution textures will work to
our advantage. This choice will average high frequency indirect
lighting information and greatly reduce the noise in the final
solution. It is possible to use ray differentials [Igehy 1999] and
mip-mapping techniques to benefit from appropriate filtering

regardless of texture sizes. In our implementation, the texture
maps resolutions are computed to be proportional to each surface
size and aspect ratio. That metric can be computed in world space
or in screen space based on what works best in each case. This
choice is left to the user, who can also adjust a global resolution
multiplier parameter. Screen space was used most often as it
would automatically scale the textures proportionally to their
screen coverage and provide a good automatic default. This
method also assigns very low resolution textures to objects far in
the distance from the camera’s point of view. However the
technique fails to provide consistent texture sizes in cases of
extreme camera motion or when objects are outside the camera
frustum.
 Notice that in our context, the radiosity maps can be computed
efficiently with no perceptible noise. When simulating multiple
bounces of light, the maps can be derived using a light tracing
algorithm, or can be replaced by an alternate caching structure
such as a photon map. Doing so requires spending substantially
more compute time shooting enough light samples to eliminate
noise in the maps, which translates otherwise into temporal noise
in the final render. To reduce visual artifacts in corner areas, it has
also been suggested to disregard the caching structure and use
recursive distributed ray tracing when ray intersections are
arbitrarily close to the ray origin. Our restricted framework
doesn’ t suffer from these problems, which, in turn, greatly
contributes to reduced final render times.

4.5 Irradiance Caching Coherence

The benefits of the irradiance gradient caching technique are very
valuable to us [Ward and Heckbert 1992]. During the light
gathering step, we compute irradiance samples located on micro-
polygons that may be displaced. Every irradiance sample is saved
in a cache along with corresponding geometric information and
irradiance gradient vectors. This information is used to smoothly
extrapolate irradiance values for neighboring positions.
 We adjust the technique to enhance caching coherence for
scenes containing high geometric detail and complex surface
properties. To compute the error of using a sample i at any
position x, we use the following function instead:

 () () ()()nxnx nipii

��
eeke ,max, ×= (2)

where ()

��
�

�
��
�

�
��
�

�
��
�

�

-
=

-+ RR
R

xx
x

i

i
pi

,,
2

minmax

e (3)

and ()
)cos(1

1

+-

×-
=

a
e i

ni
nn

n
��

�
 (4)

k controls the general accuracy of the algorithm, and is the only
parameter that the user can modify. k was set to 1 in most cases,
and +a was hard-coded to 10 degrees. Ri is the closest distance to
the intersected surfaces during the evaluation of the irradiance
sample i. At each pixel we compute the area of that pixel
projected onto the plane passing through x with normal n

�
using

the camera projection. We then let R+ and -R be respectively 10
and 1.5 times the square root of the projected pixel area. These
values can easily be derived using the solid angle of the pixel
through which x is seen.
 To avoid sampling the irradiance, we loop over candidate
cached samples with positive weight and compute the weighted
average of their extrapolated contribution. The weight of each
sample is computed using the equation below:
 () ()nxnxw ii

��
,1, e-= (5)

 (a) direct and indirect lighting (b) only indirect lighting

 (c) closeup of a complex BRDF (d) irradiance sampling frequency

 (e) using the bumped normal (f) using the original error function

Figure 5: A bouncing ball in a cornell box rendered with equation (8),
using 1000 rays per irradiance sample. (a) and (b) show that most of the
lighting on the sphere is indirect. (c) shows a closeup of a bump-mapped
complex BRDF. (d) shows the irradiance samples as white pixels when
using equation (5) with 5.0=k . (e) is similar to (d) but uses a bumped
normal in equation (4). (f) uses the error function described in [Ward and
Heckbert 1992]. The accuracy was adjusted so that image (d) and (f)
contain the same number of irradiance samples. Image (f) shows a higher
sample density in corner areas.

 5

 This model nicely correlates the maximum distance to
candidate cached samples with the scale of the scene and the
amount of detail desired in the final render. The sampling density
is adjusted automatically, avoiding sampling patterns that are too
sparse or too dense. Figure 5 (d) and (f) illustrate the sampling
frequency that is achieved when using equation (5) and the
original error function described in [Ward and Heckbert 1992]
respectively. They have both been rendered using the same
number of irradiance samples. The error function presented above
avoids over-sampling the irradiance in corner areas, when
compared to the original formulation. It will therefore scale better
with highly detailed geometry that contain more corners or
creases and less flat surfaces.
 In addition, we avoid over-sampling the irradiance due to
surface normal perturbations by using a surface normal that has
not been altered by bump mapping when computing equation (4).
Comparing figure 5 (d) and (e) illustrates the corresponding gain
in caching coherence. To speed-up the workflow, users can also
disable displacement mapping during interactive lighting sessions,
which increases the coherence similarly.
 In specific cases that offer great payoff, we allow procedural
geometry shaders to enhance the irradiance caching coherence.
The high geometric frequency of fur, for instance, completely
degrades the efficiency of this interpolation scheme. However, if
the fur is short, it can be interesting to apply the same indirect
illumination to the fur as to the surface growing it. In this case we
allow the geometry shader to specify the location where light
gathering should be performed. For each fur fragment, the
geometry shader has the option to force indirect illumination
queries to occur at the root of the corresponding hair. This greatly
enhances caching coherence along and across each hair while
producing consistent and acceptable lighting as seen in figure 9.

4.6 Approximate Lighting Model

We propose a simplified lighting model that enables the irradiance
caching coherence described in the previous section, while
preserving some of the properties of complex BRDFs.
 During the final shading step, we apply the extrapolated
irradiance to the local surface shader, by converting the irradiance
to corresponding approximate incoming field radiance. We choose
a dominant incoming light direction w¢

�
, and we assume the result

of the irradiance to be coming fully from this direction. Since we
assumed an ideally diffuse surface property when we sampled the
irradiance, we compute the radiance as follows:

 () ()
w

w
¢×

=¢ ��
�

�

n
nxE

xLi
,

, (6)

where ()nxE

�
, is the extrapolated irradiance at position x and is

computed as described in section 4.5. This information is then
passed to the surface shader to let it sum this contribution
applying its full BRDF. Each time the irradiance is sampled
during the light gathering step, we derive a dominant incoming
light direction iw¢

�
 using the weighted average of the ray directions

used in sampling the hemisphere. The luminance of each ray’s
radiance estimate is used in the weighting process. This provides a
direction of dominant incoming indirect light, which varies
smoothly across a surface. The result is stored in the cache along
with its corresponding irradiance sample, and averaged at any
position x using weights described in equation (5):

 ()

() ()

()�
�

>

>

¢

»¢

0,

0,

,

,,

,

i

i

wi

i

wi

iiii

nxw

nxnxw

nx �

���

��
w

w (7)

 As it is possible to capture enhanced chromaticity effects by
applying this technique separately for each wavelength, we
choose three dominant incoming light directions instead. Each of
the three directions is the result of weighting sample ray directions
by the radiance estimate’s color components red, green and blue
respectively. The radiance for each specific wavelength is then
applied coming from its corresponding dominant direction.
 This yields the following approximate rendering equation:

 () () ()� ¢+=
k

kreo xfxLxL wwww
����

,,,, ()kd xL w¢
�

, kn w¢×
��

 ()�
=

¢+

BGR

r xf

,,

,,

l

l ww
�� ()ll w¢

�
,xLi lw¢×

��
n (8)

Li� is computed using equation (6) and lw¢

�
 using equation (7). Ld

denotes the direct lighting contribution from a traditional point
light source k and is evaluated using the corresponding
programmable light shader.
 While physically incorrect, this indirect lighting model is an
efficient way to apply the irradiance gradient caching technique to
surfaces with arbitrary BRDFs. This technique requires storing a
little extra information in the irradiance cache and reduces
considerably the number of rays required to capture dominant
directional effects on indirectly lit surfaces. Figure 5 (c) was
rendered using equation (8), which enabled using a sparse
distribution of irradiance samples, as illustrated in figure 5 (d).
Rendering the sphere in that figure would otherwise require
sampling the irradiance at each pixel.
 Although this method has limitations when the average is not a
good heuristic to compute the dominant light direction, it has been
applied to a wide range of practical cases without causing
artifacts.

5 Tool Description

We discuss the integration of the algorithms and concepts
presented in previous chapters within a proprietary production
renderer and a framework of existing shaders. The rendering
workflow is presented as well as a description of the many
controls available to the user.

5.1 Shader Integration

The indirect illumination is available to the user as a new type of
light shader that can be used on any surface. In our framework,
surface shaders can be written independently of the desired
lighting effects. The light shaders are responsible for providing
incoming light directions and colors. Since our lighting model fits
this framework, its application does not require pre-existing
surface shaders to be modified. The indirect lighting contributes
automatically to complex surface effects such as subsurface
scattering.
 In comparison, some rendering systems require the surface
shader to explicitly invoke indirect lighting samples. This choice
permits a surface shader to easily apply importance sampling
using properties of its BRDF. Since this is not a requirement in
our approximate model, it is more flexible for us to alleviate the
surface shaders from that task. In cases where it is needed, a more
generic interface allows surface shaders to provide a description
of their BRDF [Slusallek and Seidel 1995].
 The indirect light shader provides only indirect illumination.
The separation from the direct illumination is important as it
allows independent control and adjustment of each contribution. It
also lets each type of light shader be responsible for solving a
different problem, using an appropriate sampling strategy [Ward

 6

1995]. An area light, for instance, is modeled using many virtual
point light sources scattered over its surface. Ideally specular
reflections and refractions are treated similarly, after tracing
additional rays.

5.2 Workflow

In our rendering system, the deep frame buffer can be shaded
multiple times using an interactive lighting tool. This allows
reshading without spending any resources processing and scan-
converting the geometry. This works well in a typical workflow,
where the animation is established and the lighter need only focus
on lighting a few fixed frames.
 The lighting tool can also trigger the light gathering pass prior
to shading. Since we make use of irradiance caching, two passes
are required so that each pixel extrapolates irradiance from cached
samples located above and below the current scan line in the
image plane. When gathering and shading are performed in a
single pass, pixels only extrapolate irradiance from cached
samples located on one side of the scan line, which produces
unacceptable visual artifacts. Yet, we let the gathering pass
provide visual feedback to the user by also shading the image
using low quality settings. At the end of the gathering pass, the
irradiance cache is saved into a file for future reuse. When the
final shading pass happens, only the irradiance cache is used to
derive indirect illumination.
 The image can be reshaded many times, without having to trace
a single ray as long as the indirect illumination remains
unchanged. If that is not the case, the user can specifically request
use of both gathering and shading passes. This is an important
aspect of the workflow, as it provides a way to keep adjusting
most of the shader settings, while getting quick visual feedback.
In many cases, changes to the direct lighting will have an impact
on the indirect lighting. Still, the user can adjust the former many
times without triggering a gathering pass. After several iterations
and adjustments, the lighter can then fully update the solution.
 Also of importance, is the ability to perform light gathering
without needing to pre-compute radiosity maps or any alternate
caching structure. Our choice to only simulate one bounce of
indirect light allows us to do so without excessively degrading
interactive rendering performance. In our case, lighters can indeed
go through initial adjustments without using the radiosity maps
caching technique. This allows immediate visual feedback which
speeds up interactive lighting turnaround. The maps are generated
and used mainly to optimize the rendering of film-resolution
images over the full length of a shot.

 Since we have developed an infrastructure to cache shading
information into texture maps, we can take advantage of it to
precompute and cache static indirect lighting over an entire shot
or sequence. That indirect lighting is then made available to the
shot as yet another texture map in the scene. Alternatively, we can
also reuse the irradiance cache over several frames. Each new
frame will compute light gathering only in regions of the image
that have not been covered in previous frames. The new irradiance
samples are added to the existing cache, which is then used to
render the next frame. This approach has not been used in practice
as it imposes rendering each image in a shot sequentially, which is
incompatible with our strategy of rendering images in parallel
using a render-farm.

5.3 Art Direction

Even though a physically based algorithm is used to compute
indirect illumination, its result might differ from the artist’s
aesthetic goal. A hard constraint is imposed, as no object in the
scene can be moved to alter the indirect lighting. It would
otherwise require changing the layout or the animation, which in
most cases has already been determined and finaled. We give here
an overview of the controls that are made available to the user.
 The user can control which objects in the scene will receive
indirect illumination and define the list of all the geometries that
need to be ray-traced when gathering light. The user can also
redefine which surface shader is invoked to compute the radiance
estimate when intersecting a given geometry. This provides great
flexibility, and in extreme cases allows defining the direct lighting
and the indirect lighting completely independently. The user is
able to replace complex geometries by simple bounce planes, to
control indirect lighting more easily. It also alleviates the ray
tracing engine and optimizes rendering times.
 Most shader types inherit from a set of standard parameters that
affect the indirect lighting calculation. Surface shaders, for
instance, have controls that enable altering color bleeding that
occurs between surfaces. Adjustment of the incoming indirect
lighting per-surface is also possible. Direct light shaders also
inherit parameters that let the user specify which direct lights need
to be considered in the indirect lighting calculations. A direct light
can potentially be considered only for indirect illumination, but
not cast any direct lighting in the final image.
 To let the user apply geometric falloffs, we provide a filter light
shader, which references a specific indirect light shader in the
scene. The filter light provides a filtered version of the indirect
illumination, and is manipulated similarly to a spot light, defining

 (a) using a single bounce of indirect light (b) using multiple bounces of indirect light

Figure 6: Example of a
character in interior lighting
conditions. Highly indirect
lighting contributions can
efficiently be rendered and
easily controlled, by letting
the artist place lights and
bouncing geometry that
approximate these effects.
Image (a) was rendered
simulating a single bounce
of indirect light, while
image (b) was rendered for
comparison with multiple
bounces.

 7

a position, orientation, and cone angle. It offers a set of artificial
cone and distance falloffs, as well as a directionality falloff, that
allows the indirect lighting to vary as a function of the angle q
between the surface normal and the filter light direction. We
compute it as follows:

 () ()[]df 2/cosqq = (9)

In this model, surfaces facing the filter light will receive more
indirect lighting than surfaces facing away. d is a user parameter
that controls how fast the falloff applies.
 The filter light offers many color correction controls allowing
adjustments of brightness, contrast, and saturation, as illustrated in
figure 7. Using them in conjunction with the proper falloffs has
revealed to be a powerful indirect lighting art direction tool. Since
adjusting those settings only requires re-evaluation of the shading
pass, this provides an efficient workflow in which final color and
intensity adjustments can be made quickly.

6 Results

This tool was used extensively by artists during the production of
the computer animated feature film “Shrek 2” . It was used to light
primary and secondary characters in 78% of the shots, and to light
props and environments in 30% of the shots. Following is a
rendering example, and a discussion of the quantitative aspects of
using this framework.
 Figure 1 shows an image in which the foreground character has
been lit using direct and indirect lighting. The character reflects
light onto itself. Image (a) shows the final render, while image (b)
shows the same render without indirect lighting. The images were
rendered on a Pentium IV running at 2 GHz, using 2 GB of
physical memory. The images were rendered at film resolution for
final renders (1828 x 1102 pixels), and at a third of that resolution

for preview work. When working interactively in the lighting tool,
low quality settings were used to sample the irradiance, the
texture maps, and the shadow maps. In addition, displacement
mapping and fur were disabled, and a lower micro-polygon
tessellation rate was used. Figure 8 shows the render times for the
layer containing the foreground character in figure 1 (a).
 The radiosity texture maps were not used during interactive
work to allow for a faster adjustment and visual feedback cycle.
The textures were only used during batch rendering and the
resolutions were computed using a screen space metric. For
example, the texture map covering the character’s belly was 145
by 118 pixels.
 The geometry generated over 7.8 million micro-polygons,
while the simplified ray-traced geometry totaled only 49 thousand
polygons. The ray-traced geometry and acceleration structure only
used 23 MB of memory. Ray tracing required neither swapping
nor geometry caching on disk.
 The gathering step used 600 rays per irradiance sample at high
quality settings, and 50 rays at low quality settings. In cases where
the indirect illumination was very uniform, settings as low as 100
were enough to eliminate the noise. In more complex scenes or
when the indirect illumination came primarily from smaller areas,
settings up to 2000 were required. The average across all shots of
the movie was 420 rays per sample with a standard deviation of
250.
 The irradiance cache contained 68615 irradiance samples at
film resolution, compared to 22301 at video resolution and 10085
using low quality settings. The caching error function provides on
average 3x scalability from video to film resolution, and an
additional 50% speed-up in this case, when displacement mapping
is disabled. The render times given in figure 8 were measured
while rendering the full image viewport. However, when users
interactively update specific regions of the image, the gathering
and shading times are proportionally lower.

7 Conclusion

We have presented a set of techniques that allow animators to
render and control approximate global illumination effects that
were once considered too expensive and hard to control. Our
algorithms improve final gathering render times by ray tracing
only simplified geometry and using texture maps to cache parts of
the rendering equation. They also increase the spatial coherence
and range of application of the irradiance gradient caching
technique using an approximate lighting model. We have exposed
the integration of our algorithms within a production renderer and
its programmable shaders. We have seen how artists are able to

Film Resolution

High Quality
Video Resolution

High Quality
Video Resolution

Low Quality

Shadow-maps 0:01:33 0:00:31 0:00:22

Radiosity maps 0:03:20 0:01:37 -

Deep Frame-Buffer 0:03:03 0:01:00 0:00:10

Gathering 0:42:59 0:12:51 0:03:44

Shading 0:17:00 0:03:37 0:00:28

Total 1:07:55 0:19:36 0:04:44

Figure 8: Render times for a foreground character at film and video
resolution. The right column shows timing using low quality settings
during interactive work. Times are given in hours:minutes:seconds.

 (a) reference (b) saturated (c) warm (d) directional

Figure 7: Example of
adjusmtents of the indirect
illumination, using a filter
light shader. Image (a) is the
reference image. Image (b)
was rendered increasing the
saturation of the indirect
lighting. In image (c) the hue
of the indirect light was
adjusted to provide a warmer
feel. The overall brightness
on the character’s face was
increased using geometric
falloffs. In image (d) the
directionality was increased
to emphasize the lighting
coming from the right. Each
image took 40 seconds to
reshade at video resolution.

 8

Figure 9: Example of a furry character. The fur receives the same indirect
lighting as the skin. Only a rough tessellation of the character skin is ray
traced.

control many aspects of the indirect lighting calculation within a
workflow that provides a fast feedback loop.
 Without such a tool, artists would otherwise need to spend
significant time, placing and animating direct lights, to try to
achieve similar results. In some cases, indirect light interactions
are very difficult or nearly impossible to reproduce using only
direct lighting techniques. As characters or elements are animated
through a lit environment, the indirect lighting contributions are
automatically updated. We found that this system enhances the
image making process because a quick setup phase can provide a
solid basis early on. The artist is able to spend more time
designing and adjusting a lighting strategy as opposed to
attempting to simulate complex interaction effects.
 We plan to extend our work in several challenging directions,
by providing additional light bounces to our solution, without
introducing obstacles in the user’s workflow. We would also like
to enhance further the spatial coherence by using undisplaced
surface positions and normals in the irradiance caching error
function during final renders. Finally, we would like to explore
new ways of storing additional information in the irradiance
cache, to broaden its applicability.

8 Acknowledgements

We wish to specially acknowledge Ken Bielenberg, Michael Day,
Philippe Denis, Vanitha Rangaraju, Taylor Shaw and David Hart
for extensively participating in designing and refining the tool we
have described. We would like to thank Deepak Tolani for writing
the code to invert the texture mapping functions. Many thanks to
Karl Johann Schmidt, Jonathan Gibbs, Doug Cooper, Dave
Walvoord and Mike McNeill for their valuable input during many
of the experimentation phases of this project. We would like to
acknowledge the anonymous reviewers, as well as Olivier Maury,
Eduardo Bustillo, Hector Yee, Reid Gershbein, Rachel Falk and
Jonathan Simonoff for their suggestions. We wish to thank
PDI/Dreamworks for supporting this work.

References

APODACA, T., QUARONI, G., BREDOW, R., GOLDMAN, D., LANDIS, H.,

GRITZ, L., AND PHARR, M. RenderMan in production. In
SIGGRAPH’2002, Course #16, San Antonio, July.

ARVO, J. 1986. Backward ray tracing. In Course Notes of the 1986
Conference on Computer Graphics and Interactive Techniques, no. 12,
(Dallas, Texas, Aug. 18--22). ACM.

CHRISTENSEN, P. H. 2000. Faster Photon Map Global Illumination.
Journal of Graphics Tools, volume 4, number 3, pages 1-10. ACM.

CHRISTENSEN, P. H., LAUR, D. M., FONG, J., WOOTEN, W. L., AND
BATALI, D. 2003. Ray Differentials and Multiresolution Geometry
Caching for Distribution Ray Tracing in Complex Scenes. Computer
Graphics Forum (Eurographics 2003 Conference Proceedings), pages
543-552. Blackwell Publishers.

COOK, R. L., CARPENTER, L., AND CATMULL, E. 1987. The Reyes image
rendering architecture. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH ’87 Proceedings), pages 95–102, July.

DUTRÉ, P., AND WILLEMS, Y. D. 1994. Importance-driven Monte Carlo
Light Tracing. In Proceedings of 5. Eurographics Workshop on
Rendering, pages 185–194, Darmstadt.

DRIEMEYER, T., HERKEN, R. 2003. Programming mental ray. Second,
revised edition. Springer Verlag Wien New York.

HECKBERT, P. S. 1990. Adaptive Radiosity Textures for Bidirectional Ray
Tracing. Computer Graphics 24 (4), pages 145–154.

IGEHY, H. 1999. Tracing ray differentials. Computer Graphics, 33(Annual
Conference Series):179–186.

IMMEL, D. S., COHEN, M. F., GREENBERG, D. P. 1986. A radiosity method
for non-diffuse environments. Computer Graphics 20 (4), pages 133–
142.

JENSEN, H. W. 1995. Importance driven path tracing using the photon
map. Rendering Techniques ’95 (Proceedings of the Sixth Eurographics
Workshop on Rendering), pages 326–335. Springer Verlag.

JENSEN, H. W. 1996. Global illumination using photon maps. Rendering
Techniques ’96 (Proceedings of the Seventh EurographicsWorkshop on
Rendering), pages 21–30. Springer Verlag.

JENSEN, H. W., CHRISTENSEN, P. H., KATO, T., AND SUYKENS, F. 2002. A
Practical Guide to Global Illumination using Photon Mapping. In
SIGGRAPH’2002, Course #43, San Antonio, July.

KAJIYA, J. T. 1986. The Rendering Equation. Computer Graphics 20 (4),
pages 143–149.

LAFORTUNE, E. P. AND WILLEMS, Y. D. 1993. Bidirectional Path Tracing.
In Proceedings of CompuGraphics, pages 95–104.

LAFORTUNE, E. P. 1996. Mathematical Models and Monte Carlo
Algorithms for Physcially Based Rendering. Ph.d. thesis, Katholieke
University, Leuven, Belgium 1996.

PHARR, M., AND HANRAHAN, P. 1996. Geometry caching for ray tracing
displacement maps. In Xavier Pueyo and Peter Schröder, editors,
Eurographics Workshop on Rendering, pages 31–40.

PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN, P. 1997.
Rendering complex scenes with memory-coherent ray tracing. In
SIGGRAPH 97 Conference Proceedings, pages 101–108, August.

RUSHMEIER, H., PATTERSON, C., AND VEERASAMY, A. 1993. Geometric
simplification for indirect illumination calculations, in Proc. Graphics
Interface '93, (Toronto, Ontario) , pp. 227--236.

SLUSALLEK, P., SEIDEL, H. P. 1995. Vision: An Architecture for Global
Illumination Calculations, in IEEE Transactions on Visualization and
Computer Graphics, 1(1), pp. 77-96, March.

UPSTILL, S. 1990. The Renderman Companion. AddisonWesley, 1990.
VEACH, E., AND GUIBAS, L. 1994. Bidirectional Estimators for Light

Transport. In Proceedings of the 5th Eurographics Workshop on
Rendering, pages 147–162.

VEACH, E., AND GUIBAS, L. 1995. Optimally Combinig Sampling
Techniques for Monte Carlo Rendering. Computer Graphics 29 (4),
pages 419–428.

VEACH, E., AND GUIBAS, L. 1997. Metropolis Light Transport. Computer
Graphics 31 (3), pages 65–76.

WARD, G., AND HECKBERT, P. 1992. Irradiance gradients. Third
Eurographics Workshop on Rendering, pages 85–98.

WARD, G. 1994. The RADIANCE Lighting simulation and Rendering
System. In Computer Graphics, pages 459--472, July.

